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Comparison between constant feedback and limiter controllers
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Using symbolic dynamics of the one-dimensional unimodal map, the chaos stabilization mechanics of the
feedback and limiter control schemes are considered. For feedback control, it is found that the control strength
can be efficiently obtained from the superstable parameter of the embedded periodic orbits, and the scaling of
the control-space period-doubling bifurcation cascade still obeys the Feigenbaum law. For Sarkovskii orbits,
the scaling is also consistent with that of the original chaotic system. For limiter control, a single critical point
in the unimodal map is extended to a superstable periodic window and a simple approach for determining the
value of the control plateau is found. The scaling in the control space of the period-doubling bifurcation
cascade is indeed superexponential. A different scaling for the fine structure of the Sarkovskii sequence is also
found. Simple one-dimensional unimodal maps can also be used to generate maximum-length shift-register

sequences.
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[. INTRODUCTION first is to stabilize the unstable periodic orbits embedded

] within a chaotic attractor, using for example the Ott, Gre-

Most proposals for applying chaos to spread spectrunpogi, and Yorke approacii3]. The second is to convert the
communication are based on the assumption that a chaotihaotic behavior into periodic behavior, using for example
system can generate an ideal scrambling/spreading code caffre constant feedbadlCF) [14] or limiter control [15-2Q.
sisting of aninfinite sequence of random codes, an unrealisBecause of its simplicity, the CF method has been applied
tic task for finite digital hardware. Thus, in practice periodic extensively to one[21-23 and higher-dimensional maps
pseudorandomPN) sequences are used instefld. The  [24], spatiotemporal dynamid®5], hyperchao$26], as well
most widely used binary PN code sequences are thas continuous-time systerfa7]. More recently, introduction
maximum-length shift-registefor m) sequences, Gold se- of limiter control gave us a practical way to control high-
quences, and Kasami sequeng&s3]. For applications in speed system§l5-18. To apply these approaches to our
spread spectrum communication, ranging, and analog-digitéiroblem, one first needs to estimate the control parameters
Conversion, etc_, Other binary SequenceS, especia”y non"neﬁpch that chaos is Stablll_Z€d or converted |nt0. perI_OdIC orbits.
ones, may be suitable. For example, existing wdeks6] Here we present a simple parameter estimating scheme
show that truncated and quantized chaotic sequences allofff both the CF and limiter controllers. Although substantial
performances that are superior to the classical ones. knowledge already exists in this arg2d,22,2§, some un-

On the other hand, by definition chaos consists of an inC€ar points are still unsolved, such as determining the con-
finite number of unstable periodic orbitgPOS. In prin- trol parameters of arbitrary periodic orbits and comparing the

: o : : ._ability of both controllers to stabilize high-periodicity orbits.
mplg, stable or unstable periodic orbits of arbitrary Iength.m e ei/re especially interested in a perio%icpPN squence gen-
a given chaotic system can be determlned_to_any des're\ﬁ;ator based on simple chaotic systems. A basic ingredient of
accuracy, so that a tailored set of such periodic Sequences . method is to apply symbolic dynamics of a one-
can t.)e. very usefuﬂ_?—l_q. In_ using UPO binary sequences dimensional(1D) unimodal map to the control system. By
for digital communication, it is necessary to find Su'tableemploying the standard word-lifting technique of symbolic

control parameters for the selected chaotic system in order t&ynamics[zg 30, we show that the strength of the control
optimize the digital machines generating the codes. A direc ystem can be numerically estimated. For specific maps,

strategy is to apply the known stabilization techniques ofg, - 4 the digital tent map, even analytical results can be

chaos io contrpl the long periodic orbits, so that the desire und. Once the appropriate control parameters are estimated
PN sequence is robustly generated. for a given periodic sequence, one can employ the corre-

At present the most important still open task is to Stab"'zesponding chaotic system to generate the desired binary se-

the desired orbits at high periodicity. In general, orbits be-y,ence robustly with zero waiting time. With such an imple-
come more difficult to stabilize as the periodicity increases

X . . X entation, the controlled chaotic system as a finite-state
Usually the use of special control techniques is requwecm

. achine can be used in spread spectrum communication and
[11,13. There are two basic methods to control chaos. Th‘?nany other digital applica?ions. P

The paper is organized as follows. In Sec. Il, we briefly
review the basic properties of the CF and limiter controllers,
*Present address: Institute of Applied Physics and Computationand apply symbolic dynamics of 1D unimodal maps to these
Mathematics, P. O. Box 8009, Beijing 100088, People’s Republic otwo methods. Section Il deals with applying the word-lifting
China. technique in choosing the appropriate control parameters. We
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also investigate how to generate sequences by using 1D control. We shall therefore denote=y for this control
unimodal maps with the limiter control technique. In Sec. IV, scheme.
the scaling of period-doubling systems and Sarkovskii se-
qguences for both control methods is analyzed numerically

and analytically. For the digital tent map with the limiter . ) ) ) )
control approach, the parameter values corresponding to We are interested in the unimodal functiéfx). It is ob-
Sarkovskii sequences are analytically given. The main resultgious that Eqs(1) and(2) are still unimodal maps since the

C. Symbolic dynamics of control systems

are summarized and discussed in the final section. strengthy of the feedback only realizes a translation of a
function vector in theXx, f) plane. For example, a 1D map is
Il. CONTROLLING CHAOS BY CF translated up or down the vertical axis if H@d) is used, and
AND LIMITER SCHEMES it is translated left or right of the axis if Eq.(2) is used. For

) ) i the system(3), the problem is somewhat difficult, since a

The basic mechanism for controlling chaos can be undergingie critical point(x,) in the original system now becomes
stood by analyzing the 1D mag.,=f(x,,@), wherex,isthe o finite window[x.— ¢, x.+¢ ], where ¢ and ¢ denote the
system state andis the system parameter. In this study, We et ang right boundary values of the control window. Asso-
consider control of systems whose dynamics can be de&s;aieqd with each superstable periodic o(§PQ of periodk
scribed by 1D unimodal maps, especially the logistic a”?ls a window in which orbits of period are stable. If we treat
tent maps. In the next subsections we shall apply symboligyis control window as a single critical point, we could
dynamics techniques to these two 1D maps. still say that the limiter control systerf8) is a unimodal
map. However, this finite superstable window leads to disap-
pearance of the chaos, while the periodic orbits remain.
In this method, a CF is added at each iteration to theMioreover, any orbit of the systeii3) is a periodic orbit as

A. Constant feedback controller

right-hand side of the functiof(x,,a). It follows that long ash#f(x.). To generate a desired orbit, one has to
calculate the corresponding parameter vdiue
Xne1 = F0xn,@) + 7, @) It is convenient to rewrite Eqg1)—<3) in the form
where y € R indicates the strength of the feedback control.
Parthasarathy and Sinlia4] first applied this method to the Xne1 = F06,a,9), )

Iogist_ic. {:md equnential maps for specific parameter vglue§uch that the time serig,,n=0,1,2,...} of this equation
and initial conditions. They found convergence to fixed qrresponds to an orbit of the map with initial conditigg
points anq perlod|c points. Querc[)ﬁl] presented an anglyu— The symbolic description of a givex, is defined as=1 or
cal description of the algorithm, and prpved thf'ﬂy@xlsts R if x,>x. and s=0 or L if x<x.. The symbol stringS
sugh that the s_yster(rl) converges to a fixed point if is a =555y -~ With s, € {0, 1} or s, e {R, L} i the forward itiner-
unimodal fu_nctlon. . ) ary of the initial pointx,. A periodic orbit of lengtim is a real
Another interpretation of the.CF methaotl) is to assume  qjution of f(x) =f(f(---F(x)--)) =x. Obviously the latter
that the variable, can be supenmposed at gac_h lteration byhas 2 solutions in the complex space, and there will Bep
a constant pulse. The corresponding equation is [28r24 less perioda orbits for the map. A periodic orbit is stable if

Xoe1 = F(X + 7,d), 2) |df™(x)/dX ='|f’(x)f’(f.(x'))- I (F(F(-- -f(x)'- : -)))|XO§ 1, apd
) . superstable if the orbit intersects the critical potgtthat is,
so that the map is controlled by changirgin such a way dfM(x)/dx, =0. The symbol string obtained byg=%. is of

that an appropriate feedback is applied in the form of pulsesspecial interest and is called the superstable period orbit.

HereX.=x. for the CF control, an&. e [—¢+X.,X:+ €] for
the limiter control.

Recently Corron and co-workef$5,16 introduced a dif- For a periodic sequencéRL™R™---QCy”, whereQ=R
ferent control approach, namely, control by simple limiters,or L, and C, is associated with the critical poif. The

such that control is realized when a certain variable excee%rresponding equation for this Superstab|e periodic se-
a threshold. Their approach was successfully tested for difquence is

ferent conditions, and a period-34 UPO in a low-frequency

circuit was successfully demonstrated. Stoop and Wagner f;el(f[l'“l(f;f'”z‘(---(fal(ic,a, V) =fX,a,y), (5)
[19] analyzed simple limiter controllers, and found that con-

trol is limited by superexponential scaling in the control Where

space[20]. Here we shall provide a systematic theory. For Fn = )

1D discrete maps, the control scheme is implemented by Q eve ’
[15-2Q n

{f(xma) if f(x,,a) < 7, andfzt andf,* are the inverse functions 6f For y=0, it is
n+l =

B. Limiter controller

(3 in general easy to obtain from E¢p) an iterative solution of

the parametea for a SPQ[29,3(Q. Furthermore, the control
wherevy is the limiter parameter. As will be shown below, the parametery can also be estimated if the system paramater
parametery is directly related to the height of the limiter is given.

if f(xna) =,
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lll. CHOICE OF CONTROL PARAMETERS increased. Chaos appears when—v,. The feedback

In general, orbits become more difficult to stabilize as thezgﬁrnggoj;‘ Iga;qrﬁéggi gp ?h(e72)rtig?r1r:rcl)cr)3i;?ch?n\l§§ like the

perlod_lmty increases. Existing studies usua_lly invoke ra_ther We now consider the operation of the two control
complicated methods, such as the evolutionary algorithm

[22], or network training based on genetic algorithm evolu-SChemeS' For iIIUStration.’ we use a superstable periodic se-
' guenceRLRC. For the original logistic map, the value af

tion [28], to find the best control parameter value such tha : d . ;
the controlled orbit is closest to the desired one. In the fol-%Or this SPO s easily calculated from E@), which can be

lowing, we shall show that the control strength in Eqs.vm%[ten eXp!lfltly initerative - form  as [30]  an.
(1)«(3) can easily be calculated using symbolic dynamics for=Va,+\Va,—Va,. The iteration converges rapidly for any

an arbitrarily long periodic orbit. reasonable initial valuey e (0,2], and yieldsa®=lim,_,..a,
~1.310702 641 336 8332. The procedure in forming this
A. Constant feedback control SPO is shown in Fig. ().

For the CF contro(6), using Eq.(5) for the SPORLRG,

. - w2
We consider the logistic mafix,a)=1-ax*. Egs.(1) and one easily obtains

(2) then become

v=a’a-1, (8)

X1 = 1—a0g+y (6) , ,
so that to determine the control strengthwe should first
compute the corresponding superstable parametdrom

Xo1= 1 —a(x, +7)2, ) the original chaotic systerf(x,a,0). Accordingly, we obtain
for the SPORLRC the value

and

where again the control parameters ar@ifurcation param-

ete and y (strength of feedbagk When y=0, this discrete y~1.3107026413368332/2~-1

system exhibits standard period doubling and onset of chaos ~ —0.344 648 679 331 583 4.

as a is increased. Figure(& shows a typical bifurcation

diagram of the logistic map. The period-doubling bifurcation Figure 2b) shows the control procedure of the CF scheme.

cascade here obeys the Feigenbaum scaling[Bil a.  Clearly, the control map functiofi(x,a,y) is a downward

-a,~ 6", with §=4.669 201 609 103.. translated version of the original chaotic systé(r,a,0).
Figures 1b) and Xc) show the behavior of the two feed- We note that the expressioi®) can also be obtained by

back control schemes as given by E@.and(7) for a=2,  transforming the control syste(®) into the standard form of

corresponding to a system with fully developed chaosthe logistic map:x’,,=1-a'x'? with a’=a(1+y) and x’

Period-doubling bifurcations can clearly be observed/&s  =x/(1+7y). If the parameter’ is associated with a SPO, we
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readily get the expressia®). This linear transformation im- means that the corresponding binary sequence 10011 gener-

plies that both the logistic map and the corresponding CRted via the CF control, as given in Figcg is robust and

control system6) are of equivalent topology. Whep con-  has zero waiting time.

tinuously varies from some negative value to zero, all the

SPOs in the original logistic map would appear, provided

that a proper initial condition is used. The analysis here pro- B. Limiter control: The logistic map

vides an explicit mapping of the controlled system to the _ o

uncontrolled one at a different parameter setting. This rela- USing Eq.(3) for the logistic map, one gets

tionship is of interest since it implies that the search for good

parameter values amounts to identifying the parameter val- _
. _{1 —ax if X1 <h,

n+l—

h if X,:1=h,

ues for the periodic windows in the quadratic map.

The control systeni7) is stabilized by applying appropri-
ate pulsesy to the system variable. Mathematically, the map
function in Eq.(7) is only a left- or right-shifted version of
the original logistic map illustrated in Fig(®. Its symbolic ~ and the corresponding period-doubling bifurcation cascade is
description is thus consistent with that of the controlled lo-shown in Fig. 1d). We see that the bifurcation cascade
gistic map Eq.(6). Settingx,=x,+v, we can transform Eq. clearly differs in scaling from the Feigenbaum cascade, and
(7) into x/,,=1-ax,2+v, which is equivalent to Eq(6).  there is no chaos even beyohd.

Thus, for an arbitrarily given admissible sequence, 6. The stabilization mechanisms in the feedbg@kand lim-
and(7) give the same control strengtpra®/a—1. iter (9) control schemes are quite different. As shown in Fig.

In order to stabilize the uncontrolled logistic map on the2(d), the main strategy in the limiter control is to convert the
nearest(k+1)-periodic SPO of the controlled logistic map, location of the original unstable periodic orbits into the con-
we can add one more symbﬁL to the sequence by tak”‘]g troller threshold of the controlled SyStem, Ieading to the ap-
into account &-periodic UPO sequence of the latter. For this Pearance of a finite superstable window in the new system.
SPO, the strength of the feedback control can be numericall§for the logistic map, the superstable windowf+g.+X., €
determined by using Eq8). For example, for a period-5 +Xc] with x;=0, and a stable periodic trajectory must even-
UPORLLRR the corresponding period-6 SPOR&LRRG.  tually land on the plateain=1-ae>. A periodic orbit of
The stabilization procedure is shown in Figag wherey  length k corresponds to a real solution of(x)
~0.046 359 954 467 349. Using this control parameter andf(f(---f(xp,a,h)---))=h. For an admissible symbolic se-
the initial conditionxy=0 in Eq. (6), we obtain(recall that quence at fixek, and a, we can also estimate the limiter
a=2) a stable periodic orbit, as shown in Fighg Clearly, parameteih from Eq. (5).
the transition time to form this periodic-6 SPO is zero, which  For the control systen®), we define the symbol rule

9)
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(a) 2°=1.9072800910653021, y=—0.0463599544673490 (b) time series (x,=0)
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FIG. 3. The stabilization pro-
-1 -1 cedure of the targeRLLRRusing
-1 -0.5 0 0.5 1 0 500 1000 1500 2000 constant feedback contr@). The
X n dashed line still corresponds to
(O target sed. 5&3300( 5 fully developed chaosa=2. (a)
. . . . Geometrical representation(b)
time series, and(c) the binary
target sequencg representation.

control sequence

period

R if x,> e, Unlike the CF method, where a unique control strength
Co i exists for a given periodic orbit, marfperhaps infinitgcon-
r If0 <X, <€, L .
trol values are possible in the limiter controller for the same

s=y Co if x,=0, (100 sPO. This is because, in Eqs.(11) and(12) can be con-
C, if-e<x,<0, tinuously taken from the windoge., €.]. As will be shown

L ifx.<-e¢ in the following discussion on the digital tent map, the pa-

. " ¢ rameterx, determines the optimal configuration of the digital

and setf;Q’lL:(+,—)\r’(1—xo)/a. Note that here three symbols binary sequence generator.
(Cr, Cy, andC,) are needed to denote,. The control pa-

rameter can then be calculated from - -
C. Limiter control: The digital tent map

- 1,1 A controlled digital tent map is very useful for generating
EC 1 g(aux()) ’ (11) . ..

a a a long PN sequence. For example, consider the digital tent
where map [33], defined as

2X,, if 0 <X, <h/2,
Xpe1=1h if /2<x,,<B-h/2, (14
2(B-x, if B-h/2<x,,1<B,

glaxy) = Va+ Va--- £ va(l-xp), (12)
andx, is defined by

— € if CS: CL!
=10 if C.=C (13) where the state variablg, and the bas® are integers. We
0 sT Yo also define a symbol rule
€c if CS: CR! -
so that for the orbiRLRG, shown in Fig. 2d), we easily R if B-h2<x,<B,
get  ~0.2902846772544624  and h=1-2& Cr if Bl2<x,<B-h/2,
~0.831 469 612 302 545 2. s=1 CO if Xn = B/2, (15)

To demonstrate the generation of UPO binary sequences, _
we consider the following three cases. A period-5 UPO CL if W2<x,<B/2,
RLLRRcan be implemented by usiiRLLRRG, RLLRRG, L ifo=sx,<h/2,
and RLLRRG [32], yielding h=0.970 031 253 194 544 0,
0.969 077 286 229 078 0, and 0.970 941 817 426 052 Cand setf;f:B—XO/Z andf[1=xo/2. For the digital tent map,
respectively. The stabilization procedure is shown in Fig. 4Eq. (5) can thus be expressed explicitly as
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(a) h=0.9700312531945440 (RLLRRC ) (b) £_=0.1224106751992162
1 1
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1 1 sentation with C;=Cg, and (d)
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X
11 1 bit error appears after about 50 cycles. To stabilize higher-
B- 23 B- 5(- ~xg) | = h, period target sequences by the logistic map, a high-precision
o - computer is needed.
L R (16)
D. Generation of m sequences by unimodal maps
where _ )
We now turn our attention ton sequences. In particular,
h/2 if Cs=C, we consider whether the simplest chaotic map, the unimodal
Xo = | BI2 if C.=C,, (17) map, can be employed to generate amgequence. We shall

. start with a brief introduction to the linear feedback shift
B-h2 if Cs=Cg. register(LFSR). The LFSR is a typical finite-state machine

For any admissible symbolic sequence of 1D unimodapnd has been extensively studied and generalized to a far
maps, the relation betwedhandh can be obtained analyti- Proader class of logical machines. Timesequence is derived
cally from Egs.(16) and (17). As an example, we again from the class of irreducible polynomiald]. Mathemati-
consider the period-5 UP@GLLRR As shown earlier, such cally, @ LFSR can be expressed as a “feedback function”
an orbit can be generated by usi®.LRRG, RLLRRG, f(X)=ZZTcx' @1, where the symbolss and = denote
and RLLRRG, which vyield h=59B/64, 58/63, and modulo-2 additions, and;, xe{0,1} are the feedback con-
12B/13, respectively. We s&=64, 63, and 13, respectively. nections and states, respectively. With appropriate choice of
To minimize the configuration of the corresponding digital the line feedbackc in this function, one can obtain am
circuit [34] for any given target sequence, one should chooseequence. Its period i=2"-1, wherem represents the
the smallest basB, or 13<2*-1). This choice of the opti- number of stages of a LFSR. For example, using the line
mal base means that a four-bit machine is sufficient to genfeedbackc=[10100Q with initial statex=[00001], as shown
erate the binary sequence 10011 with=C,. For the other in Fig. 6@, one gets a period-31m sequence
two cases, to generate such a sequence one must use sevk$@001001011011111000110111010.
bit (for B=64) and six-bit(for B=63) machines. Surprisingly, this binary sequence corresponds to a SPO

In principle, the approach here can be used to stabilize at@lso UPQ of the unimodal magd35]. For the CF control,
arbitrarily long periodic orbit with a computer of any preci- the controlling parameter of the logistic map is given py
sion. Figure 5 shows the control of a 508-period sequences—0.005 827 220 839 239. For the limiter control, the pa-
where the optimal parameters aBs=1019,h=1018, and rameter paife;,h] is approximately0.043 770 157 829 400
C,=Cg. However, it should be pointed out that at present2, 0.996 168 346 567 178],8[0.043 770 157 819 215 6,
such a long sequence has not been successfully controlldd996 168 346 568 961]9and[0.043 770 157 809 031 O,
using the logistic map with either the CF or limiter controller 0.996 168 346 570 745]0for {C, ,C,,Cg}, respectively. For
even when a 53-bit floating-point computer is used. In factthe digital tent map, the parameter pair of the limiter control
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(2) B=1019, h=1018, x=509
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b ’ﬁgfﬁ%{ e * % B ' 1% guence is generated by the digital
o 1000 2000 3000 4000 5000 7000 8000 9000 10000 tent map for B=1019,h=1018,
n andC,=Cg. (a) Time series(b) an
(c) target sequence P508, control with C =CR enlargemen_t ofa), and(c) binary
T T T T T e T T representation. Note that the error
“"“get Sec]“eH",lmceHI I . i of bit between the target sequence
bit erro
__controll sequence | | |_ i | i | | ) | ) |
0 50 100 150 200 250 300 350 400 450 500
period
can be given exactly by [B,h] values, one can optimize the design of any nevsequence

=[429 496 729 5, 417 525 000,8429 496 729 6, 417 525
000 9, and[429 496 729 7, 417 525 001],0respectively.

generator based on chaotic hardware implementg8dh
In principle, any unimodal map is capable of generating

Figure 7 shows that thim sequence can be generated usingan arbitrarily longm sequence if we have an arbitrarily high-
the digital tent map with a 32-bit machine. Moreover, we bit machine. To stabilize a perl(m{argert] sequence via the
find that by adding a state to the original LFSR, as shown irimiter controller one needs at least & -bit machine be-

Fig. &b), its mirror sequence is easily formed. Examining
this mirror sequence 1000001110010001111001101001,

cause of an anomalous superexponential scaling property, to
be discussed in the next section. On the other hand, although

we see that the sequence also corresponds to a period-8#% constant feedback control still obeys the well-known

SPO.
Table | gives the subset of ath sequences with.=2°

Feigenbaum scaling law in the control space, it cannot be
used to generate very long periodic sequences robustly, since

-1 and their corresponding mirror sequences. By examiningny rounding error of the shift iteration map can cause the
these sequencg®9)], it is easily verified that these sequencescalculated shift valugassociated with a single superstable

are indeed admissible SPO sequen¢g§]. Their corre-

critical poinf to go out of the accuracy range. How to handle

sponding parameter values are given in Table I. Using thesghis problem is a new challenge in chaos control.

flxy=2>+23+1

[0 =00}~ 0}~{1F—

(a) 1000010010110011111000110111010

f@)=(@"+2*+1) el

A =111~ 0%

(b) 1000001110010001010111101101001

FIG. 6. (a) Five-stage shift register with line feedback connec-
tion ¢=[10100; (b) its corresponding mirror sequence generator.

IV. SCALING PROPERTIES

It is of practical interest to consider the convergence rate
of the successive bifurcation points. If the bifurcation cas-
cade is of any universality, it will be useful to find the
strength required to convert a chaotic state to the desired
stable states using one of the two control methods. To ana-
lyze the scaling behavior of the period-doubling bifurcation
cascade in the control space, we calculate the rate of conver-
gence ofé, from the formula

Yn+t1~ Yn

On = (18

Yne2 ™ Yo+l

A. Constant feedback controller

For the CF method, the strength is determined by(By.
Substituting Eq. (8) into Eq. (18) yields &,=(a},;
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FIG. 7. Stabilization procedure

2000 of a period-31 maximum-length
shift-register sequence using the
digital tent map(14) with limiter

control. (a) Geometrical represen-

tation, (b) time series, andc) bi-
nary representation.

x10° (a) B=4294967295,h=4175250008 x10° (b) x0=2132922793
|
4 T 4 1
: R L L |
I
3 . 3
I —_
= l £ mmmsmmmamsmnsaasinsas
T2 i x2
11
.
1 ) IIT 1
i
0 I 0
0 1 2 3 4 0 500 1000 1500
X x 10° n
(c) target-seq: 1000010010110011111000110111010 _(P31)
| confrol-seg _1000010010110011111000110111010G, (P2) |
target sequence
control sequence | | | |
0 5 10 15 20 25
period

-av)/(at,,—a,,) which is only related with superstable pe-
riodic points of the uncontrolled logistic mafor fixed sys-
tem parameter). Obviously, the iteration converges tg
=y,—const/S" with the Feigenbaum universal constafit

B. Limiter controller

Consider the scalings,=(h,;1—h,)/(hyo—hpeq) of the
limiter control. A superstable periodic orbit associated with
differentC(=C,,Cg,C,) can give rise to different parameter

[31]. For the purpose of comparing with limiter control, we values. As shown in Table Ill, the valuesgf corresponding
also estimate the parameter values corresponding to the 20 C,=C, and C,# C, for the period-doubling cascade are
(n=1, ..., 12) cycles by using the symbolic description. The different. For both the logistic and tent maps, an infinite pe-

result is shown in Table Il. At our computer precisioy,

riodic sequence appearshat~ 0.852 489 223 156 092 2 and

converges to the Feigenbaum constéop to 4.669 201 and h,,~0.824 908 067 280 215 2, respectively. Beydndhaos

v, ~—0.299 422.

does not occur in the limiter control. Furthermore, it is seen

TABLE I. A list of all m sequences and their corresponding mirror set Wwitt81. The parameters
[B,h,Cs] correspond to the control values of the digital tent map discussed in Sec. IV C.

No. connection m sequence [B,h,C4]
1 10100 10000100101100111000110111010 [4294967295,41752500@3,]
2 10010 1000010101110110111100110100 [4294967295,4188285813,]
3 11110 10000101101010001110111001001 [4294967295,4180718878,]
4 11101 10000111001101110100010010101 [1431655765,1398917955,]
5 11011 1000011010100100011011010011 [4294967295,4214778438,]
6 10111 1000011001021110110001010110 [4294967295,4220178633,]
Mirror set of C,,, sequence

1 10100 100000111001000101111101101001 [4294967295,4246629218;]
2 10010 10000011001011011010100010011 [1431655765,141927596%;]
3 11110 100000110110011101001010111000 [252645135,2504044 18R]

4 11101 1000001011101101010010001100 [1431655765,14132720%,]
5 11011 10000010011000110010101101110 [4294967295,42322197 9]
6 10111 1000001000111010100101001101 [1431655765,141026688%;]
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COMPARISON BETWEEN CONSTANT FEEDBACK AND..

TABLE II. Controlling parameter and scaling coefficients of the
feedback contro(6) for the first few terms of the primary period-

doubling bifurcation cascade=2", n=1,..., 12, witha=2.

n Tn n

1 —0.5000000000000000 4.3856775985683534
2 —0.3446486793315834 4.6009492765380413
3 —0.3092262577839692 4.6551304953910275
4 —0.3015273201477196 4.6661119478267086
5 —0.2998734593926081 4.6685485814280785
6 —0.2995190185275788 4.6690606602814757
7 -0.2994430975301109 4.6691715545784955
8 —0.2994268370865245 4.6691951537908132
9 —0.2994233545750348 4.6692001793132869
10 —0.2994226087266872 4.6692011893566958
11 —0.2994224489887624

12 —0.2994224147777874

from Table Il that these two maps with differeft, give
almost the same superexponential relationship

8,~22'+1, n=0,...,.

(19

As discussed, the parameter pldr, h] of the digital tent
map can be analytically calculated. The parameter valuesade. Fom# 0, from the existence of a period{®RLC) it
corresponding to SPOs are listed in Table IV for the first fewfollows that the orbits must have all possible periods.

terms of the primary period-doubling bifurcation cascade.

For n=0, the parameteri$,,,h,] are given by

PHYSICAL REVIEW E 71, 016204(2005

22" if C4=Cy,

B,= 20

" 22+1 if Co# Cy, (20
n-1

h,=B,- [ (2*~1) forn=1, (22)
k=0

andhy=1,2 for C;=C, and Cs# C,, respectively. FoB=1,
we see that Eq(21) reduces to Eq(2) of Ref. [20] for Cg
# Cy, and Eq.(10) of Ref.[33] for Cs=C,, respectively.

For C,=C,, we get from Eqs(20) and(21) and the defi-
nition of §

22"
el m ”
5“ = n+1 = n =~ 2 + 1! (22)
227 -1 ~ 22 -1
22n+1

which is consistent with the numerical results given in Table
Il and Eq.(19). The same scaling is also valid f@g# C,.

C. Sarkovskii sequences

To compare the scaling properties of the two controllers,
we now consider the family of Sarkovskii sequences defined
by R*™x(RLR") [29,37-39, wheren,m=0, 1,.., and the
symbol * denotes an:-composition rulef40,41). For m=0,
1,..., fixed n=0 gives the period-doubling bifurcation cas-

According to EQ.(8), it is clear that uncontrolled and
controlled(with CF) logistic systems are of the same scaling

TABLE lIl. Controlling parameter and scaling coefficients of the limiter control for the first few terms of
the primary period-doubling bifurcation cascade2",n=0...., 6 for the logistic mag9), and the tent map

(14) with B=1.
Cs=Cy Cs#Co

n h, bn h, Sn

Logistic map
0 0 5.6858369565984210 0.5 7.5003867514630684
1 0.7071067811865476  6.2539199810038868  0.8090169943749475  18.203474114051435
2 0.8314696123025452  17.603429384436126  0.8502171357296141  257.91467840874850
3 0.8513551931052652  257.45753068379724  0.8524804477269028  65537.891229309535
4 0.8524848355384778  65537.497007586746  0.8524892231560922
5 0.8524892232230416 0.8524892232899908
6 0.8524892232899908

Tent map
0 0.5 1.3333333333333339  0.6666666666666666  12.750000000000048
1 0.75 5.3333333333333330 0.8 17.133333333333333
2 0.8125 17.066666666666666  0.8235294117647058  257.00784313301438
3 0.82421875 257.00392156862745  0.8249027237354085  65537.070883511173
4 0.8249053955078125  65537.070867171031  0.8249080671986817
5 0.8249080672394484 0.8249080672802152
6 0.8249080672802152
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TABLE IV. Parameters corresponding to the period-doubling cas¢Bde?”,n=0,...,5) of the digital tent map. Here, the column
[B,h]Cs indicates that a superstable periodic sequence is generated with the given parameters. For example, a period@ &Pthd01
implemented throughB,h]={[16,13,[17,14)}, which correspond to 1@, and 10T, respectively.

n Superstable sequen€e [B,h]Cy [B,h]Cs B-h

0 [2,1] [3,21CRr 1

1 1 [4,3] [5,4]C. 1

2 101 (16,13 [17,14Cr 3

3 1011101 [256,211 [257,213C, 45

4 101110101011101 [65536,54061 [65537,5406Cr 11475

5 1011101010111011101110101011101 [4294967296,35429531F1 [4294967297,3542953112, 752014125

as Sarkovskii sequences. For the limiter control, these nuguences in the limiter control of 1D unimodal maps indeed
merical results also suggest that a superexponential scalinghey the superexponential Scam@gmNzZ

Shm ~ 22" perhaps exists in the unimodal map. In order to

verify this relation, we again consider the digital tent map V. CONCLUSION AND DISCUSSION

(14). For Cs=C,, the parameter values corresponding to

some Sarkovskii sequences are listed in Table V. Obviously, In conclusion, we have investigated in detail the stabili-

the parameteB can be expressed in the form zation mechanism of arbitrary periodic orbits by applying
" symbolic dynamics to the feedback and limiter control
Bmn=[2"°]*", mn=0,1,... (23)  schemes. We have shown that the strength of the feedback

control is associated with the superstable parameters of the

To obtain information on the heigtit, we note thatd=8 periodic orbits embedded in chaos, while the superstable pla-

~h satisfies teau of the limiter control corresponds to the location of the
[ n unstable periodic orbits in the original chaotic system. It is
> 2% found that the scaling behavior of the period-doubling bifur-
[ cation cascade for these two methods is completely different
n in the control space. In fact, the feedback control obeys the
Omnoo=Omneo+§ > 291X 3% 7, (24)  well-known Feigenbaum scaling law, while the limiter con-
' ' i=1 trol exhibits anomalous superexponential scaling. Using
n symbolic dynamics, we have obtained analytically a more
D> 288 % 2 x5x127 general scaling coefficient, corresponding to the sequence of
\ i=1 period-doubling bifurcations of the controlled digital tent

map. For the Sarkovskii sequence, we have also investigated
the control parameter and obtained the scaling law. It is
1  ifm=0, found that the strength of the feedback control obeys the
d 111 ifm=1 25) same scaling_ relation as the superstable parameter of the
mn=0 ' original chaotic system. For the limiter control, a different
717 if m=2. superexponential relation quantitatively describing the fine
structure of the Sarkovskii sequence is found. Furthermore,
the control parameters, obtained exactly for the digital tent
map, make sure that the periodic PN sequence generator

for m=0,1,2, respectively, and

Thus, the heighh for m=2 is hy,,=Bpn—0n 0, and the rate
of convergence is

( 1 . based on chaos can be optimally configured.
2 if m=0, To apply our control-parameter estimating technique to
\ digital communications, we have as a simple example also
B =4 1-2"x7 if m=1 (26) investigated how to use 1D unimodal maps with limiter con-
nn 4 -2 T ' trol to generaten sequences. Because the setndequences
1-P"2 % 7% 5% 127 is only a subset Qf th_e SPQ@also UPO3% of 1D unimodal .
Zpvi0y 3 % 5 X 127 if m=2. maps[36], an arbitrarily longm-sequence generator can in
\ principle also be implemented by employing any 1D unimo-
For B=1, Eq.(26) becomes dal map with an arbitrary-precision machine. However, an
important question still remains: are there simple control
o 1 2m+1 _ techniques for stabilizing an arbitrarily long UPO orbit with
Shm = rl]Tl éﬁmn =2 m=0,1,2,... (27) a low-bit computer? This question is especially relevant to

low-cost digital circuit implementation. There are several
The analytical and numerical results obtained here from th@ossible strategies to deal with this problem. The first is to
logistic and digital tent maps show that the Sarkovskii sesplit a long UPO sequence into several sh@dmissiblg
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TABLE V. Parameters corresponding to periodic orbits associated with the Sarkovskii theorem. The length of the periodic sequences is
P=(2n+3) X 2™ wherem,n=0, 1,... The symbol—means that the corresponding sequence cannot be represented when a 53-bit computer
is used.

m/n 6 5 4 3 2 1 0
P
60 52 44 36 28 20 12
1 30 26 22 18 14 10 6
15 13 11 9 7 5 3
B
— 4503599627370496 17592186044416 68719476736 268435456 1048576 4096
1 1073741824 67108864 4194304 262144 16384 1024 64
32768 8192 2048 512 128 32 8
h
— 3715055758791379 14511936557779 56687252179 221434579 864979 3379
1 885837005 55364813 3460301 216269 13517 845 53
27307 6827 1707 427 107 27 7
d=B-h
<r— 788543868579117 3080249486637 12032224557 47000877 183597 717
1 187904819 11744051 734003 45875 2867 179 11
0 5461 1365 341 85 21 5 1

symbolic sequences. For this, thecomposition rule intro- speed chaotic analog oscillators, and design a symbolic syn-
duced in Sec. IV C can be a guide for the splitting. One carchronization receiver[17,18. Our parameter-estimation
then optimize the resulting sequences with low-bit hardwaregechnique can then be useful, such as in preparing the lookup
using the direct and simple parameter-estimating procedureble.

introduced here. However, for spread spectrum communica- Although the use of UPO sequences in spread spectrum
tions it may not be suitable with respect to miniaturization,systems implies that the randomlike character of chaotic sys-
power efficiency, high data rate, and high security. The sectems is partially lost, most of the long periodic sequences are
ond strategy is to develop new control techniques for extendin fact still very close to random sequences. Furthermore, for
ing the period lengtH42]. However, a problem with this applications such as in direct spread spectrum communica-
approach is that the obtained sequences may not have thiens, the corresponding security can be provided by other
necessary randomne$$] and correlation[2,3] properties. encryption techniquef3,43,44 involving chaos-based cryp-
The latter property is especially relevant to receiver synchrotography[45]. Such nonlinear encoding, while not critical
nization as well as multiuser communication. The third, andfor the present problem, should be of interest for future in-
more practical, strategy is to apply limiter control to high- vestigations.
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