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Using symbolic dynamics of the one-dimensional unimodal map, the chaos stabilization mechanics of the
feedback and limiter control schemes are considered. For feedback control, it is found that the control strength
can be efficiently obtained from the superstable parameter of the embedded periodic orbits, and the scaling of
the control-space period-doubling bifurcation cascade still obeys the Feigenbaum law. For Sarkovskii orbits,
the scaling is also consistent with that of the original chaotic system. For limiter control, a single critical point
in the unimodal map is extended to a superstable periodic window and a simple approach for determining the
value of the control plateau is found. The scaling in the control space of the period-doubling bifurcation
cascade is indeed superexponential. A different scaling for the fine structure of the Sarkovskii sequence is also
found. Simple one-dimensional unimodal maps can also be used to generate maximum-length shift-register
sequences.
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I. INTRODUCTION

Most proposals for applying chaos to spread spectrum
communication are based on the assumption that a chaotic
system can generate an ideal scrambling/spreading code con-
sisting of aninfinite sequence of random codes, an unrealis-
tic task for finite digital hardware. Thus, in practice periodic
pseudorandom(PN) sequences are used instead[1]. The
most widely used binary PN code sequences are the
maximum-length shift-register(or m) sequences, Gold se-
quences, and Kasami sequences[1–3]. For applications in
spread spectrum communication, ranging, and analog-digital
conversion, etc., other binary sequences, especially nonlinear
ones, may be suitable. For example, existing works[4–6]
show that truncated and quantized chaotic sequences allow
performances that are superior to the classical ones.

On the other hand, by definition chaos consists of an in-
finite number of unstable periodic orbits(UPOs). In prin-
ciple, stable or unstable periodic orbits of arbitrary length in
a given chaotic system can be determined to any desired
accuracy, so that a tailored set of such periodic sequences
can be very useful[7–10]. In using UPO binary sequences
for digital communication, it is necessary to find suitable
control parameters for the selected chaotic system in order to
optimize the digital machines generating the codes. A direct
strategy is to apply the known stabilization techniques of
chaos to control the long periodic orbits, so that the desired
PN sequence is robustly generated.

At present the most important still open task is to stabilize
the desired orbits at high periodicity. In general, orbits be-
come more difficult to stabilize as the periodicity increases.
Usually the use of special control techniques is required
[11,12]. There are two basic methods to control chaos. The

first is to stabilize the unstable periodic orbits embedded
within a chaotic attractor, using for example the Ott, Gre-
bogi, and Yorke approach[13]. The second is to convert the
chaotic behavior into periodic behavior, using for example
the constant feedback(CF) [14] or limiter control [15–20].
Because of its simplicity, the CF method has been applied
extensively to one[21–23] and higher-dimensional maps
[24], spatiotemporal dynamics[25], hyperchaos[26], as well
as continuous-time systems[27]. More recently, introduction
of limiter control gave us a practical way to control high-
speed systems[15–18]. To apply these approaches to our
problem, one first needs to estimate the control parameters
such that chaos is stabilized or converted into periodic orbits.

Here we present a simple parameter estimating scheme
for both the CF and limiter controllers. Although substantial
knowledge already exists in this area[21,22,28], some un-
clear points are still unsolved, such as determining the con-
trol parameters of arbitrary periodic orbits and comparing the
ability of both controllers to stabilize high-periodicity orbits.
We are especially interested in a periodic PN sequence gen-
erator based on simple chaotic systems. A basic ingredient of
our method is to apply symbolic dynamics of a one-
dimensional(1D) unimodal map to the control system. By
employing the standard word-lifting technique of symbolic
dynamics[29,30], we show that the strength of the control
system can be numerically estimated. For specific maps,
such as the digital tent map, even analytical results can be
found. Once the appropriate control parameters are estimated
for a given periodic sequence, one can employ the corre-
sponding chaotic system to generate the desired binary se-
quence robustly with zero waiting time. With such an imple-
mentation, the controlled chaotic system as a finite-state
machine can be used in spread spectrum communication and
many other digital applications.

The paper is organized as follows. In Sec. II, we briefly
review the basic properties of the CF and limiter controllers,
and apply symbolic dynamics of 1D unimodal maps to these
two methods. Section III deals with applying the word-lifting
technique in choosing the appropriate control parameters. We
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also investigate how to generatem sequences by using 1D
unimodal maps with the limiter control technique. In Sec. IV,
the scaling of period-doubling systems and Sarkovskii se-
quences for both control methods is analyzed numerically
and analytically. For the digital tent map with the limiter
control approach, the parameter values corresponding to
Sarkovskii sequences are analytically given. The main results
are summarized and discussed in the final section.

II. CONTROLLING CHAOS BY CF
AND LIMITER SCHEMES

The basic mechanism for controlling chaos can be under-
stood by analyzing the 1D mapxn+1= fsxn,ad, wherexn is the
system state anda is the system parameter. In this study, we
consider control of systems whose dynamics can be de-
scribed by 1D unimodal maps, especially the logistic and
tent maps. In the next subsections we shall apply symbolic
dynamics techniques to these two 1D maps.

A. Constant feedback controller

In this method, a CF is added at each iteration to the
right-hand side of the functionfsxn,ad. It follows that

xn+1 = fsxn,ad + g, s1d

wheregPR indicates the strength of the feedback control.
Parthasarathy and Sinha[14] first applied this method to the
logistic and exponential maps for specific parameter values
and initial conditions. They found convergence to fixed
points and periodic points. Gueron[21] presented an analyti-
cal description of the algorithm, and proved that ag exists
such that the system(1) converges to a fixed point iff is a
unimodal function.

Another interpretation of the CF method(1) is to assume
that the variablexn can be superimposed at each iteration by
a constant pulse. The corresponding equation is then[23,24]

xn+1 = fsxn + g,ad, s2d

so that the map is controlled by changingxn in such a way
that an appropriate feedback is applied in the form of pulses.

B. Limiter controller

Recently Corron and co-workers[15,16] introduced a dif-
ferent control approach, namely, control by simple limiters,
such that control is realized when a certain variable exceeds
a threshold. Their approach was successfully tested for dif-
ferent conditions, and a period-34 UPO in a low-frequency
circuit was successfully demonstrated. Stoop and Wagner
[19] analyzed simple limiter controllers, and found that con-
trol is limited by superexponential scaling in the control
space[20]. Here we shall provide a systematic theory. For
1D discrete maps, the control scheme is implemented by
[15–20]

xn+1 = H fsxn,ad if fsxn,ad , g,

g if fsxn,ad ù g,
J s3d

whereg is the limiter parameter. As will be shown below, the
parameterg is directly related to the height of the limiter

control. We shall therefore denoteh;g for this control
scheme.

C. Symbolic dynamics of control systems

We are interested in the unimodal functionfsxd. It is ob-
vious that Eqs.(1) and(2) are still unimodal maps since the
strengthg of the feedback only realizes a translation of a
function vector in thesx, fd plane. For example, a 1D map is
translated up or down the vertical axis if Eq.(1) is used, and
it is translated left or right of thex axis if Eq.(2) is used. For
the system(3), the problem is somewhat difficult, since a
single critical pointsxcd in the original system now becomes
a finite window fxc−el ,xc+erg, whereel and er denote the
left and right boundary values of the control window. Asso-
ciated with each superstable periodic orbit(SPO) of periodk
is a window in which orbits of periodk are stable. If we treat
this control window as a single critical pointxc, we could
still say that the limiter control system(3) is a unimodal
map. However, this finite superstable window leads to disap-
pearance of the chaos, while the periodic orbits remain.
Moreover, any orbit of the system(3) is a periodic orbit as
long as hÞ fsxcd. To generate a desired orbit, one has to
calculate the corresponding parameter valueh.

It is convenient to rewrite Eqs.(1)–(3) in the form

xn+1 = fsxn,a,gd, s4d

such that the time serieshxn,n=0,1,2,…j of this equation
corresponds to an orbit of the map with initial conditionx0.
The symbolic description of a givenxn is defined ass=1 or
R if xn.xc and s=0 or L if x,xc. The symbol stringS
=s0s1s2¯ with snP h0,1j or snP hR,Lj is the forward itiner-
ary of the initial pointx0. A periodic orbit of lengthn is a real
solution of f sndsxd= fsf(¯fsxd¯ )d=x. Obviously the latter
has 2n solutions in the complex space, and there will be 2n or
less period-n orbits for the map. A periodic orbit is stable if
udfsndsxd /dxu= uf8sxdf8(fsxd)¯ f8(fsf(¯fsxd¯ )d)ux0

,1, and
superstable if the orbit intersects the critical pointxc, that is,
dfsndsxd /dxuxc

=0. The symbol string obtained byx0= x̃c is of
special interest and is called the superstable period orbit.
Here x̃c;xc for the CF control, andx̃cP f−el +xc,xc+erg for
the limiter control.

For a periodic sequence,sRLn1Rn2
¯QCsd`, whereQ=R

or L, and Cs is associated with the critical pointx̃c. The
corresponding equation for this superstable periodic se-
quence is

fR
−1sfL

−1,n1
„fR

−1,n2s¯„fQ
−1sx̃c,a,gd… ¯ d…d = fsx̃c,a,gd, s5d

where

and fR
−1 and fL

−1 are the inverse functions off. For g=0, it is
in general easy to obtain from Eq.(5) an iterative solution of
the parametera for a SPO[29,30]. Furthermore, the control
parameterg can also be estimated if the system parametera
is given.
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III. CHOICE OF CONTROL PARAMETERS

In general, orbits become more difficult to stabilize as the
periodicity increases. Existing studies usually invoke rather
complicated methods, such as the evolutionary algorithm
[22], or network training based on genetic algorithm evolu-
tion [28], to find the best control parameter value such that
the controlled orbit is closest to the desired one. In the fol-
lowing, we shall show that the control strength in Eqs.
(1)–(3) can easily be calculated using symbolic dynamics for
an arbitrarily long periodic orbit.

A. Constant feedback control

We consider the logistic mapfsx,ad=1−ax2. Eqs.(1) and
(2) then become

xn+1 = 1 −axn
2 + g s6d

and

xn+1 = 1 −asxn + gd2, s7d

where again the control parameters area (bifurcation param-
eter) andg (strength of feedback). Wheng=0, this discrete
system exhibits standard period doubling and onset of chaos
as a is increased. Figure 1(a) shows a typical bifurcation
diagram of the logistic map. The period-doubling bifurcation
cascade here obeys the Feigenbaum scaling law[31]: a`

−an,d−n, with d=4.669 201 609 103….
Figures 1(b) and 1(c) show the behavior of the two feed-

back control schemes as given by Eqs.(6) and (7) for a=2,
corresponding to a system with fully developed chaos.
Period-doubling bifurcations can clearly be observed asg is

increased. Chaos appears wheng→g`. The feedback
strengthg in Eqs. (6) and (7) therefore behaves like the
bifurcation parametera of the original logistic map.

We now consider the operation of the two control
schemes. For illustration, we use a superstable periodic se-
quenceRLRCs. For the original logistic map, the value ofas

for this SPO is easily calculated from Eq.(5), which can be
written explicitly in iterative form as [30] an+1

=Îan+Îan−Îan. The iteration converges rapidly for any
reasonable initial valuea0P s0,2g, and yieldsas=limn→`an

<1.310 702 641 336 8332. The procedure in forming this
SPO is shown in Fig. 2(a).

For the CF control(6), using Eq.(5) for the SPORLRCs,
one easily obtains

g = as/a − 1, s8d

so that to determine the control strengthg, we should first
compute the corresponding superstable parameteras from
the original chaotic systemfsx,a,0d. Accordingly, we obtain
for the SPORLRCs the value

g < 1.310 702 641 336 833 2/2 − 1

< − 0.344 648 679 331 583 4.

Figure 2(b) shows the control procedure of the CF scheme.
Clearly, the control map functionfsx,a,gd is a downward
translated version of the original chaotic systemfsx,a,0d.
We note that the expression(8) can also be obtained by
transforming the control system(6) into the standard form of
the logistic map:xn+18 =1−a8xn8

2 with a8=as1+gd and x8
=x/ s1+gd. If the parametera8 is associated with a SPO, we

FIG. 1. Bifurcation behavior
of the logistic map and the corre-
sponding control systems.(a) Lo-
gistic map,(b) constant feedback
control (6), (c) constant feedback
control (7), and(d) limiter control
(9).
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readily get the expression(8). This linear transformation im-
plies that both the logistic map and the corresponding CF
control system(6) are of equivalent topology. Wheng con-
tinuously varies from some negative value to zero, all the
SPOs in the original logistic map would appear, provided
that a proper initial condition is used. The analysis here pro-
vides an explicit mapping of the controlled system to the
uncontrolled one at a different parameter setting. This rela-
tionship is of interest since it implies that the search for good
parameter values amounts to identifying the parameter val-
ues for the periodic windows in the quadratic map.

The control system(7) is stabilized by applying appropri-
ate pulsesg to the system variable. Mathematically, the map
function in Eq.(7) is only a left- or right-shifted version of
the original logistic map illustrated in Fig. 2(c). Its symbolic
description is thus consistent with that of the controlled lo-
gistic map Eq.(6). Settingxn8=xn+g, we can transform Eq.
(7) into xn+18 =1−axn8

2+g, which is equivalent to Eq.(6).
Thus, for an arbitrarily given admissible sequence, Eqs.(6)
and (7) give the same control strengthg=as/a−1.

In order to stabilize the uncontrolled logistic map on the
nearestsk+1d-periodic SPO of the controlled logistic map,
we can add one more symbolCs to the sequence by taking
into account ak-periodic UPO sequence of the latter. For this
SPO, the strength of the feedback control can be numerically
determined by using Eq.(8). For example, for a period-5
UPO RLLRR, the corresponding period-6 SPO isRLLRRCs.
The stabilization procedure is shown in Fig. 3(a), whereg
<0.046 359 954 467 349. Using this control parameter and
the initial conditionx0=0 in Eq. (6), we obtain(recall that
a=2) a stable periodic orbit, as shown in Fig. 3(b). Clearly,
the transition time to form this periodic-6 SPO is zero, which

means that the corresponding binary sequence 10011 gener-
ated via the CF control, as given in Fig. 3(c), is robust and
has zero waiting time.

B. Limiter control: The logistic map

Using Eq.(3) for the logistic map, one gets

xn+1 = H1 − axn
2 if xn+1 , h,

h if xn+1 ù h,
J s9d

and the corresponding period-doubling bifurcation cascade is
shown in Fig. 1(d). We see that the bifurcation cascade
clearly differs in scaling from the Feigenbaum cascade, and
there is no chaos even beyondh`.

The stabilization mechanisms in the feedback(6) and lim-
iter (9) control schemes are quite different. As shown in Fig.
2(d), the main strategy in the limiter control is to convert the
location of the original unstable periodic orbits into the con-
troller threshold of the controlled system, leading to the ap-
pearance of a finite superstable window in the new system.
For the logistic map, the superstable window isf−ec+xc,ec

+xcg with xc=0, and a stable periodic trajectory must even-
tually land on the plateauh=1−aec

2. A periodic orbit of
length k corresponds to a real solution off skdsxd
= fsf(¯fsx0,a,hd¯ )d=h. For an admissible symbolic se-
quence at fixedx0 and a, we can also estimate the limiter
parameterh from Eq. (5).

For the control system(9), we define the symbol rule

FIG. 2. Geometrical interpre-
tation of the mechanism of control
of chaos in the logistic map. The
dashed line corresponds to fully
developed chaosa=2. (a) Super-
stable orbitRLRCs, (b) stabiliza-
tion procedure using constant
feedback control(6), (c) stabiliza-
tion procedure using constant
feedback control(7), and (d) sta-
bilization procedure using limiter
control (9).
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s=5
R if xn . ec,

CR if 0 , xn ø ec,

C0 if xn ; 0,

CL if − ec ø xn , 0,

L if xn , − ec,
6 s10d

and setfR,L
−1 =s+,−dÎs1−x0d /a. Note that here three symbols

(CR, C0, and CL) are needed to denoteCs. The control pa-
rameter can then be calculated from

ec =Î1

a
S1 −

1

a
gsa,x0dD , s11d

where

gsa,x0d = Îa + Îa¯ ± Îas1 − x0d, s12d

andx0 is defined by

x0 = 5− ec if Cs = CL,

0 if Cs = C0,

ec if Cs = CR,
6 s13d

so that for the orbitRLRC0 shown in Fig. 2(d), we easily
get ec<0.290 284 677 254 462 4 and h=1−2ec

2

<0.831 469 612 302 545 2.
To demonstrate the generation of UPO binary sequences,

we consider the following three cases. A period-5 UPO
RLLRRcan be implemented by usingRLLRRC0, RLLRRCR,
and RLLRRCL [32], yielding h<0.970 031 253 194 544 0,
0.969 077 286 229 078 0, and 0.970 941 817 426 052 0,
respectively. The stabilization procedure is shown in Fig. 4.

Unlike the CF method, where a unique control strengthg
exists for a given periodic orbit, many(perhaps infinite) con-
trol values are possible in the limiter controller for the same
SPO. This is becausex0 in Eqs. (11) and (12) can be con-
tinuously taken from the windowf−ec,ecg. As will be shown
in the following discussion on the digital tent map, the pa-
rameterx0 determines the optimal configuration of the digital
binary sequence generator.

C. Limiter control: The digital tent map

A controlled digital tent map is very useful for generating
a long PN sequence. For example, consider the digital tent
map [33], defined as

xn+1 = 52xn if 0 ø xn+1 , h/2,

h if h/2 ø xn+1 ø B − h/2,

2sB − xnd if B − h/2 , xn+1 ø B,
6 s14d

where the state variablexn and the baseB are integers. We
also define a symbol rule

s=5
R if B − h/2 , xn ø B,

CR if B/2 , xn ø B − h/2,

C0 if xn = B/2,

CL if h/2 ø xn , B/2,

L if 0 ø xn , h/2,
6 s15d

and setfR
−1=B−x0/2 and fL

−1=x0/2. For the digital tent map,
Eq. (5) can thus be expressed explicitly as

FIG. 3. The stabilization pro-
cedure of the targetRLLRRusing
constant feedback control(6). The
dashed line still corresponds to
fully developed chaosa=2. (a)
Geometrical representation,(b)
time series, and(c) the binary
representation.
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s16d

where

x0 = 5h/2 if Cs = CL,

B/2 if Cs = C0,

B − h/2 if Cs = CR.
6 s17d

For any admissible symbolic sequence of 1D unimodal
maps, the relation betweenB andh can be obtained analyti-
cally from Eqs. (16) and (17). As an example, we again
consider the period-5 UPORLLRR. As shown earlier, such
an orbit can be generated by usingRLLRRC0, RLLRRCR,
and RLLRRCL, which yield h=59B/64, 58B/63, and
12B/13, respectively. We setB=64, 63, and 13, respectively.
To minimize the configuration of the corresponding digital
circuit [34] for any given target sequence, one should choose
the smallest baseB, or 13s,24−1d. This choice of the opti-
mal base means that a four-bit machine is sufficient to gen-
erate the binary sequence 10011 withCs=CL. For the other
two cases, to generate such a sequence one must use seven-
bit (for B=64) and six-bit(for B=63) machines.

In principle, the approach here can be used to stabilize an
arbitrarily long periodic orbit with a computer of any preci-
sion. Figure 5 shows the control of a 508-period sequence,
where the optimal parameters areB=1019,h=1018, and
Cs=CR. However, it should be pointed out that at present
such a long sequence has not been successfully controlled
using the logistic map with either the CF or limiter controller
even when a 53-bit floating-point computer is used. In fact,

bit error appears after about 50 cycles. To stabilize higher-
period target sequences by the logistic map, a high-precision
computer is needed.

D. Generation of m sequences by unimodal maps

We now turn our attention tom sequences. In particular,
we consider whether the simplest chaotic map, the unimodal
map, can be employed to generate anym sequence. We shall
start with a brief introduction to the linear feedback shift
register(LFSR). The LFSR is a typical finite-state machine
and has been extensively studied and generalized to a far
broader class of logical machines. Them sequence is derived
from the class of irreducible polynomials[1]. Mathemati-
cally, a LFSR can be expressed as a “feedback function”
fsxd=oi=1

%mcix
i % 1, where the symbols% and o% denote

modulo-2 additions, andci , xP h0,1j are the feedback con-
nections and states, respectively. With appropriate choice of
the line feedbackc in this function, one can obtain anm
sequence. Its period isL=2m−1, wherem represents the
number of stages of a LFSR. For example, using the line
feedbackc=f10100g with initial statex=f00001g, as shown
in Fig. 6(a), one gets a period-31m sequence
1000010010110011111000110111010.

Surprisingly, this binary sequence corresponds to a SPO
(also UPO) of the unimodal map[35]. For the CF control,
the controlling parameter of the logistic map is given byg
<−0.005 827 220 839 239. For the limiter control, the pa-
rameter pairfec,hg is approximately[0.043 770 157 829 400
2, 0.996 168 346 567 178 8], [0.043 770 157 819 215 6,
0.996 168 346 568 961 9], and [0.043 770 157 809 031 0,
0.996 168 346 570 745 0], for hCL ,C0,CRj, respectively. For
the digital tent map, the parameter pair of the limiter control

FIG. 4. Stabilization procedure
of the target RLLRR using the
limiter control (9). (a) Geometri-
cal representation withCs=C0, (b)
time series,(c) geometrical repre-
sentation with Cs=CR, and (d)
geometrical representation with
Cs=CL.
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can be given exactly by fB,hg
=f429 496 729 5, 417 525 000 8g, [429 496 729 6, 417 525
000 9], and [429 496 729 7, 417 525 001 0], respectively.
Figure 7 shows that thism sequence can be generated using
the digital tent map with a 32-bit machine. Moreover, we
find that by adding a state to the original LFSR, as shown in
Fig. 6(b), its mirror sequence is easily formed. Examining
this mirror sequence 1000001110010001010111101101001,
we see that the sequence also corresponds to a period-32
SPO.

Table I gives the subset of allm sequences withL=25

−1 and their corresponding mirror sequences. By examining
these sequences[29], it is easily verified that these sequences
are indeed admissible SPO sequences[36]. Their corre-
sponding parameter values are given in Table I. Using these

values, one can optimize the design of any newm-sequence
generator based on chaotic hardware implementation[34].

In principle, any unimodal map is capable of generating
an arbitrarily longm sequence if we have an arbitrarily high-
bit machine. To stabilize a period-n target sequence via the
limiter controller one needs at least a 22n

-bit machine be-
cause of an anomalous superexponential scaling property, to
be discussed in the next section. On the other hand, although
the constant feedback control still obeys the well-known
Feigenbaum scaling law in the control space, it cannot be
used to generate very long periodic sequences robustly, since
any rounding error of the shift iteration map can cause the
calculated shift value(associated with a single superstable
critical point) to go out of the accuracy range. How to handle
this problem is a new challenge in chaos control.

IV. SCALING PROPERTIES

It is of practical interest to consider the convergence rate
of the successive bifurcation points. If the bifurcation cas-
cade is of any universality, it will be useful to find the
strength required to convert a chaotic state to the desired
stable states using one of the two control methods. To ana-
lyze the scaling behavior of the period-doubling bifurcation
cascade in the control space, we calculate the rate of conver-
gence ofdn from the formula

dn =
gn+1 − gn

gn+2 − gn+1
. s18d

A. Constant feedback controller

For the CF method, the strength is determined by Eq.(8).
Substituting Eq. (8) into Eq. (18) yields dn=san+1

s

FIG. 5. A 509-period target se-
quence is generated by the digital
tent map for B=1019,h=1018,
andCs=CR. (a) Time series,(b) an
enlargement of(a), and(c) binary
representation. Note that the error
of bit between the target sequence
and the control sequence is zero.

FIG. 6. (a) Five-stage shift register with line feedback connec-
tion c=f10100g; (b) its corresponding mirror sequence generator.
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−an
sd / san+2

s −an+1
s d which is only related with superstable pe-

riodic points of the uncontrolled logistic map(for fixed sys-
tem parametera). Obviously, the iteration converges togn
=g`−const/d n with the Feigenbaum universal constantd
[31]. For the purpose of comparing with limiter control, we
also estimate the parameter values corresponding to the 2n

(n=1, …, 12) cycles by using the symbolic description. The
result is shown in Table II. At our computer precision,gn
converges to the Feigenbaum constantd up to 4.669 201 and
g`,−0.299 422.

B. Limiter controller

Consider the scalingdn=shn+1−hnd / shn+2−hn+1d of the
limiter control. A superstable periodic orbit associated with
differentCss=C0,CR,CLd can give rise to different parameter
values. As shown in Table III, the values ofhn corresponding
to Cs=C0 and CsÞC0 for the period-doubling cascade are
different. For both the logistic and tent maps, an infinite pe-
riodic sequence appears ath`,0.852 489 223 156 092 2 and
h`,0.824 908 067 280 215 2, respectively. Beyondh` chaos
does not occur in the limiter control. Furthermore, it is seen

TABLE I. A list of all m sequences and their corresponding mirror set withL=31. The parameters
fB,h,Csg correspond to the control values of the digital tent map discussed in Sec. IV C.

No. connection m sequence fB,h,Csg

1 10100 1000010010110011111000110111010 [4294967295,4175250008,CL]

2 10010 1000010101110110001111100110100 [4294967295,4188285872,CL]

3 11110 1000010110101000111011111001001 [4294967295,4180718876,CL]

4 11101 1000011100110111110100010010101 [1431655765,1398917956,CL]

5 11011 1000011010100100010111110110011 [4294967295,4214778436,CL]

6 10111 1000011001001111101110001010110 [4294967295,4220178632,CL]

Mirror set of Cm sequence

1 10100 1000001110010001010111101101001 [4294967295,4246629218,CR]

2 10010 1000001100101101111010100010011 [1431655765,1419275966,CR]

3 11110 1000001101100111101001010111000 [252645135,250404478,CR]

4 11101 1000001011101101010011110001100 [1431655765,1413272058,CR]

5 11011 1000001001100011110010101101110 [4294967295,4232219798,CR]

6 10111 1000001000111010100101111001101 [1431655765,1410266886,CR]

FIG. 7. Stabilization procedure
of a period-31 maximum-length
shift-register sequence using the
digital tent map(14) with limiter
control. (a) Geometrical represen-
tation, (b) time series, and(c) bi-
nary representation.
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from Table III that these two maps with differentCs give
almost the same superexponential relationship

dn , 22n
+ 1, n = 0,…,`. s19d

As discussed, the parameter pairfB,hg of the digital tent
map can be analytically calculated. The parameter values
corresponding to SPOs are listed in Table IV for the first few
terms of the primary period-doubling bifurcation cascade.
For nù0, the parametersfBn,hng are given by

Bn =H22n
if Cs = C0,

22n
+ 1 if Cs Þ C0,

J s20d

hn = Bn − p
k=0

n−1

s22k
− 1d for n ù 1, s21d

and h0=1,2 for Cs=C0 and CsÞC0, respectively. ForB=1,
we see that Eq.(21) reduces to Eq.(2) of Ref. [20] for Cs
ÞC0, and Eq.(10) of Ref. [33] for Cs=C0, respectively.

For Cs=C0, we get from Eqs.(20) and (21) and the defi-
nition of d

dn =

1 −
22n

22n
− 1

22n+1
− 1

22n+1 − 1

=
22n+1

22n
− 1

< 22n
+ 1, s22d

which is consistent with the numerical results given in Table
III and Eq. (19). The same scaling is also valid forCsÞC0.

C. Sarkovskii sequences

To compare the scaling properties of the two controllers,
we now consider the family of Sarkovskii sequences defined
by R* mp sRLR2nd [29,37–39], wheren,m=0, 1,…, and the
symbol p denotes anp-composition rule[40,41]. For m=0,
1,…, fixed n=0 gives the period-doubling bifurcation cas-
cade. FornÞ0, from the existence of a period-3sRLCsd it
follows that the orbits must have all possible periods.

According to Eq.(8), it is clear that uncontrolled and
controlled(with CF) logistic systems are of the same scaling

TABLE II. Controlling parameter and scaling coefficients of the
feedback control(6) for the first few terms of the primary period-
doubling bifurcation cascadeP=2n, n=1,…, 12, with a=2.

n gn dn

1 −0.5000000000000000 4.3856775985683534

2 −0.3446486793315834 4.6009492765380413

3 −0.3092262577839692 4.6551304953910275

4 −0.3015273201477196 4.6661119478267086

5 −0.2998734593926081 4.6685485814280785

6 −0.2995190185275788 4.6690606602814757

7 −0.2994430975301109 4.6691715545784955

8 −0.2994268370865245 4.6691951537908132

9 −0.2994233545750348 4.6692001793132869

10 −0.2994226087266872 4.6692011893566958

11 −0.2994224489887624

12 −0.2994224147777874

TABLE III. Controlling parameter and scaling coefficients of the limiter control for the first few terms of
the primary period-doubling bifurcation cascadeP=2n,n=0,…, 6 for the logistic map(9), and the tent map
(14) with B=1.

Cs=C0 CsÞC0

n hn dn hn dn

Logistic map

0 0 5.6858369565984210 0.5 7.5003867514630684

1 0.7071067811865476 6.2539199810038868 0.8090169943749475 18.203474114051435

2 0.8314696123025452 17.603429384436126 0.8502171357296141 257.91467840874850

3 0.8513551931052652 257.45753068379724 0.8524804477269028 65537.891229309535

4 0.8524848355384778 65537.497007586746 0.8524892231560922

5 0.8524892232230416 0.8524892232899908

6 0.8524892232899908

Tent map

0 0.5 1.3333333333333339 0.6666666666666666 12.750000000000048

1 0.75 5.3333333333333330 0.8 17.133333333333333

2 0.8125 17.066666666666666 0.8235294117647058 257.00784313301438

3 0.82421875 257.00392156862745 0.8249027237354085 65537.070883511173

4 0.8249053955078125 65537.070867171031 0.8249080671986817

5 0.8249080672394484 0.8249080672802152

6 0.8249080672802152
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as Sarkovskii sequences. For the limiter control, these nu-
merical results also suggest that a superexponential scaling
dh,m,22m+1

perhaps exists in the unimodal map. In order to
verify this relation, we again consider the digital tent map
(14). For Cs=C0, the parameter values corresponding to
some Sarkovskii sequences are listed in Table V. Obviously,
the parameterB can be expressed in the form

Bm,n = f22n+3g2m
, m,n = 0,1,…. s23d

To obtain information on the heighth, we note thatd=B
−h satisfies

dm,n.0 = dm,n=0 +5
o
i=1

n

22i ,

o
i=1

n

24i−1 3 3 3 7,

o
i=1

n

28i−3 3 32 3 5 3 127
6 s24d

for m=0,1,2, respectively, and

dm,n=0 = 51 if m= 0,

11 if m= 1,

717 if m= 2.
6 s25d

Thus, the heighth for mø2 is hm,n=Bm,n−dm,n, and the rate
of convergence is

dh,n
B =5

1

4
if m= 0,

1 − 22n 3 7

4 − 22n+4 3 7
if m= 1,

1 − 26n+2 3 7 3 5 3 127

4 − 26n+103 3 3 5 3 127
if m= 2.

6 s26d

For B=1, Eq.(26) becomes

dh,m = lim
n→`

1

dh,m,n
B = 22m+1

, m= 0,1,2,…. s27d

The analytical and numerical results obtained here from the
logistic and digital tent maps show that the Sarkovskii se-

quences in the limiter control of 1D unimodal maps indeed
obey the superexponential scalingdh,m,22m+1

.

V. CONCLUSION AND DISCUSSION

In conclusion, we have investigated in detail the stabili-
zation mechanism of arbitrary periodic orbits by applying
symbolic dynamics to the feedback and limiter control
schemes. We have shown that the strength of the feedback
control is associated with the superstable parameters of the
periodic orbits embedded in chaos, while the superstable pla-
teau of the limiter control corresponds to the location of the
unstable periodic orbits in the original chaotic system. It is
found that the scaling behavior of the period-doubling bifur-
cation cascade for these two methods is completely different
in the control space. In fact, the feedback control obeys the
well-known Feigenbaum scaling law, while the limiter con-
trol exhibits anomalous superexponential scaling. Using
symbolic dynamics, we have obtained analytically a more
general scaling coefficient, corresponding to the sequence of
period-doubling bifurcations of the controlled digital tent
map. For the Sarkovskii sequence, we have also investigated
the control parameter and obtained the scaling law. It is
found that the strength of the feedback control obeys the
same scaling relation as the superstable parameter of the
original chaotic system. For the limiter control, a different
superexponential relation quantitatively describing the fine
structure of the Sarkovskii sequence is found. Furthermore,
the control parameters, obtained exactly for the digital tent
map, make sure that the periodic PN sequence generator
based on chaos can be optimally configured.

To apply our control-parameter estimating technique to
digital communications, we have as a simple example also
investigated how to use 1D unimodal maps with limiter con-
trol to generatem sequences. Because the set ofm sequences
is only a subset of the SPOs(also UPOs) of 1D unimodal
maps[36], an arbitrarily longm-sequence generator can in
principle also be implemented by employing any 1D unimo-
dal map with an arbitrary-precision machine. However, an
important question still remains: are there simple control
techniques for stabilizing an arbitrarily long UPO orbit with
a low-bit computer? This question is especially relevant to
low-cost digital circuit implementation. There are several
possible strategies to deal with this problem. The first is to
split a long UPO sequence into several short(admissible)

TABLE IV. Parameters corresponding to the period-doubling cascade(P=2n,n=0,…,5) of the digital tent map. Here, the column
fB,hgCs indicates that a superstable periodic sequence is generated with the given parameters. For example, a period-4 SPO 101C can be
implemented throughfB,hg=hf16,13g ,f17,14gj, which correspond to 101C0 and 101CR, respectively.

n Superstable sequenceC fB,hgC0 fB,hgCs B−h

0 [2,1] [3,2]CR 1

1 1 [4,3] [5,4]CL 1

2 101 [16,13] [17,14]CR 3

3 1011101 [256,211] [257,212]CL 45

4 101110101011101 [65536,54061] [65537,54062]CR 11475

5 1011101010111011101110101011101 [4294967296,3542953171] [4294967297,3542953172]CL 752014125
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symbolic sequences. For this, thep-composition rule intro-
duced in Sec. IV C can be a guide for the splitting. One can
then optimize the resulting sequences with low-bit hardware
using the direct and simple parameter-estimating procedure
introduced here. However, for spread spectrum communica-
tions it may not be suitable with respect to miniaturization,
power efficiency, high data rate, and high security. The sec-
ond strategy is to develop new control techniques for extend-
ing the period length[42]. However, a problem with this
approach is that the obtained sequences may not have the
necessary randomness[1] and correlation[2,3] properties.
The latter property is especially relevant to receiver synchro-
nization as well as multiuser communication. The third, and
more practical, strategy is to apply limiter control to high-

speed chaotic analog oscillators, and design a symbolic syn-
chronization receiver[17,18]. Our parameter-estimation
technique can then be useful, such as in preparing the lookup
table.

Although the use of UPO sequences in spread spectrum
systems implies that the randomlike character of chaotic sys-
tems is partially lost, most of the long periodic sequences are
in fact still very close to random sequences. Furthermore, for
applications such as in direct spread spectrum communica-
tions, the corresponding security can be provided by other
encryption techniques[3,43,44] involving chaos-based cryp-
tography [45]. Such nonlinear encoding, while not critical
for the present problem, should be of interest for future in-
vestigations.
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